Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Authors

  • Hassan Azarkish Mechanical Engineering Department, University of Sistan and Baluchestan, Zahedan, Iran
  • Zahra Ostadmahmoodi Do Electrical and Electronic Department, University of Sistan and Baluchestan, Zahedan, Iran
Abstract:

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are prepared using wet chemical etching method which is commonly used as a simple and low cost method for producing nanowires of the same substrate material. The process conditions are adjusted to find the best quality of Si NWs. Morphology of Si NWs is studied using a field emission scanning electron microscopic technique. An energy dispersive X-Ray analyzer is also used to provide elemental identification and quantitative compositional information. Subsequently, Schottky type solar cell samples are fabricated on Si and Si NWs using ITO and Ag contacts. The junction properties are calculated using I-V curves in dark condition and the solar cell I-V characteristics are obtained under incident of the standardized light of AM1.5. The results for the two mentioned Schottky solar cell samples are compared and discussed. An improvement in short circuit current and efficiency of Schottky solar cell is found when Si nanowires are employed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

full text

study the effect of silicon nanowire length on characteristics of silicon nanowire based solar cells by using impedance spectroscopy

silicon nanowire (sinw) arrays were produced by electroless method on polycrystalline si substrate, in hf/ agno3 solution. although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. in order to study the influence of etching time (which affects the sinws length) on d...

full text

Silicon nanowire solar cells

Silicon nanowire-based solar cells on metal foil are described. The key benefits of such devices are discussed, followed by optical reflectance, current-voltage, and external quantum efficiency data for a cell design employing a thin amorphous silicon layer deposited on the nanowire array to form the p-n junction. A promising current density of 1.6 mA /cm2 for 1.8 cm2 cells was obtained, and a ...

full text

Crystalline Silicon Solar Cells

Front page headlines in the New York Times and the Wall Street Journal in 1954 heralded to the world the demonstration of the first reasonably efficient solar cells, an event made possible by the rapid development of crystalline silicon technology for miniaturised electronics. Since that time, the majority of solar cells fabricated to date have been based on silicon in monocrystalline or large-...

full text

High efficiency silicon solar cell based on asymmetric nanowire

Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/...

full text

The Effect of Spectral Albedo on Amorphous Silicon and Crystalline Silicon Solar Photovoltaic Device Performance

Correct modelling of solar photovoltaic (PV) system yields is necessary to optimize system design, improve reliability of projected outputs to ensure favourable project financing and to facilitate proper operations and maintenance. An improved methodology for fine resolution modelling of PV systems is presented using module short-circuit current (Isc) at 5-minute time-scales, and clearly identi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 49  issue 1

pages  43- 47

publication date 2016-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023